Paths, trees and matchings under disjunctive constraints
نویسندگان
چکیده
We study the minimum spanning tree problem, the maximum matching problem and the shortest path problem subject to binary disjunctive constraints: A negative disjunctive constraint states that a certain pair of edges cannot be contained simultaneously in a feasible solution. It is convenient to represent these negative disjunctive constraints in terms of a so-called conflict graph whose vertices correspond to the edges of the underlying graph, and whose edges encode the constraints. We prove that the minimum spanning tree problem is strongly NPhard, even if every connected component of the conflict graph is a path of length two. On the positive side, this problem is polynomially solvable if every connected component is a single edge (that is, a path of length one). The maximum matching problem is NP-hard for conflict graphs where every connected component is a single edge. Furthermore we will also investigate these graph problems under positive disjunctive constraints: In this setting for certain pairs of edges, a feasible solution must contain at least one edge from every pair. We establish a number of complexity results for these variants including APX-hardness for the shortest path problem.
منابع مشابه
Trees in Graphs with Conflict Edges or Forbidden Transitions
In a recent paper [Paths, trees and matchings under disjunctive constraints, Darmann et. al., Discr. Appl. Math., 2011] the authors add to a graph G a set of conflicts, i.e. pairs of edges of G that cannot be both in a subgraph of G. They proved hardness results on the problem of constructing minimum spanning trees and maximum matchings containing no conflicts. A forbidden transition is a parti...
متن کاملMinimal Spanning Trees with Conflict Graphs
For the classical minimum spanning tree problem we introduce disjunctive constraints for pairs of edges which can not be both included in the spanning tree at the same time. These constraints are represented by a conflict graph whose vertices correspond to the edges of the original graph. Edges in the conflict graph connect conflicting edges of the original graph. It is shown that the problem b...
متن کاملDetermining a Minimum Spanning Tree with Disjunctive Constraints
For the classical minimum spanning tree problem we introduce disjunctive constraints for pairs of edges which can not be both included in the spanning tree at the same time. These constraints are represented by a conflict graph whose vertices correspond to the edges of the original graph. Edges in the conflict graph connect conflicting edges of the original graph. It is shown that the problem b...
متن کاملPacking Plane Perfect Matchings into a Point Set
Let P be a set of n points in general position in the plane (no three points on a line). A geometric graph G = (P,E) is a graph whose vertex set is P and whose edge set E is a set of straight-line segments with endpoints in P . We say that two edges of G cross each other if they have a point in common that is interior to both edges. Two edges are disjoint if they have no point in common. A subg...
متن کاملMatchings Avoiding Partial Patterns and Lattice Paths
In this paper, we consider matchings avoiding partial patterns 1123 and 1132. We give a bijection between 1123-avoiding matchings with n edges and nonnegative lattice paths from (0, 2) to (2n, 0). As a consequence, the refined enumeration of 1123-avoiding matchings can be reduced to the enumeration of certain lattice paths. Another result of this paper is a bijection between 1132-avoiding match...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 159 شماره
صفحات -
تاریخ انتشار 2011